55 research outputs found

    Analytical Hierarchical Modeling Of Glacial Lake Outburst Flood Potential In The Khumbu Region, Nepal

    Get PDF
    The Himalayas have seen increasingly devastating glacial lake outburst floods (GLOF), particularly in recent years. These floods are becoming more significant and common as the climate continues to rapidly warm in the region, making accurate and frequent accounting of GLOF hazards a top priority. This study presents a methodology for efficiently modeling GLOF hazards using predominately free, global satellite remote sensing data in conjunction with an analytical hierarchical model (AHP) to inventory GLOF hazards in the Khumbu Region. Findings indicate rapidly retreating and thinning glaciers with a 34% increase in lake area, including a 303% increase in supraglacial water area. Using Imja Tsho to evaluate the sensitivity of the model, 25 potentially hazardous lakes are delineated, with four classified as very high risk and four classified as an extreme risk. Imja Tsho and Lumding Tsho rank as the highest-risk glacial lakes, with Lumding Tsho increasing its growth rate 77% percent in 2013-2019 versus 1962-2007. Unlike Imja Tsho, no mitigation work is in place to reduce the risk posed by Lumding Tsho, and few in situ studies have been conducted. Based on these findings, it is critical to form a mitigation plan to lower the risk associated with Lumding Tsho and assess the potential impact of an outburst event. Projected warming of the region and associated increase in GLOF hazard shows the continued study of GLOF hazards and mitigation is crucial to protecting vulnerable communities

    Zinc oxide nanoparticle-coated films: fabrication, characterization, and antibacterial properties

    Get PDF
    In this article, novel antibacterial PVC-based films coated with ZnO nanoparticles (NPs) were fabricated, characterized, and studied for their antibacterial properties. It was shown that the ZnO NPs were coated on the surface of the PVC films uniformly and that the coating process did not affect the size and shape of the NPs on the surface of PVC films. Films coated with concentrations of either 0.2 or 0.075 g/L of ZnO NPs exhibited antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, but exhibited no antifungal activity against Aspergillus flavus and Penicillium citrinum. Smaller particles (100 nm) exhibited more potent antibacterial activity than larger particles (1000 nm). All ZnO-coated films maintained antibacterial activity after 30 days in water

    Effects of anharmonic strain on phase stability of epitaxial films and superlattices: applications to noble metals

    Full text link
    Epitaxial strain energies of epitaxial films and bulk superlattices are studied via first-principles total energy calculations using the local-density approximation. Anharmonic effects due to large lattice mismatch, beyond the reach of the harmonic elasticity theory, are found to be very important in Cu/Au (lattice mismatch 12%), Cu/Ag (12%) and Ni/Au (15%). We find that is the elastically soft direction for biaxial expansion of Cu and Ni, but it is for large biaxial compression of Cu, Ag, and Au. The stability of superlattices is discussed in terms of the coherency strain and interfacial energies. We find that in phase-separating systems such as Cu-Ag the superlattice formation energies decrease with superlattice period, and the interfacial energy is positive. Superlattices are formed easiest on (001) and hardest on (111) substrates. For ordering systems, such as Cu-Au and Ag-Au, the formation energy of superlattices increases with period, and interfacial energies are negative. These superlattices are formed easiest on (001) or (110) and hardest on (111) substrates. For Ni-Au we find a hybrid behavior: superlattices along and like in phase-separating systems, while for they behave like in ordering systems. Finally, recent experimental results on epitaxial stabilization of disordered Ni-Au and Cu-Ag alloys, immiscible in the bulk form, are explained in terms of destabilization of the phase separated state due to lattice mismatch between the substrate and constituents.Comment: RevTeX galley format, 16 pages, includes 9 EPS figures, to appear in Physical Review

    Between the Vinča and Linearbandkeramik worlds: the diversity of practices and identities in the 54th–53rd centuries cal BC in south-west Hungary and beyond

    Get PDF
    Szederkény-Kukorica-dűlő is a large settlement in south-east Transdanubia, Hungary, excavated in advance of road construction, which is notable for its combination of pottery styles, variously including Vinča A, Ražište and LBK, and longhouses of a kind otherwise familiar from the LBK world. Formal modelling of its date establishes that the site probably began in the later 54th century cal BC, lasting until the first decades of the 52nd century cal BC. Occupation, featuring longhouses, pits and graves, probably began at the same time on the east and west parts of the settlement, the central part starting a decade or two later; the western part was probably abandoned last. Vinča pottery is predominantly associated with the east and central parts of the site, and Ražište pottery with the west. Formal modelling of the early history and diaspora of longhouses in the LBK world suggests their emergence in the Formative LBK of Transdanubia c. 5500 cal BC and then rapid diaspora in the middle of the 54th century cal BC, associated with the ‘earliest’ (älteste) LBK. The adoption of longhouses at Szederkény thus appears to come a few generations after the start of the diaspora. Rather than explaining the mixture of things, practices and perhaps people at Szederkény by reference to problematic notions such as hybridity, we propose instead a more fluid and varied vocabulary including combination and amalgamation, relationships and performance in the flow of social life, and networks; this makes greater allowance for diversity and interleaving in a context of rapid change

    Development and Validation of an Internationally-Standardized, High-Resolution Capillary Gel-Based Electrophoresis PCR-Ribotyping Protocol for Clostridium difficile

    Get PDF
    PCR-ribotyping has been adopted in many laboratories as the method of choice for C. difficile typing and surveillance. However, issues with the conventional agarose gel-based technique, including inter-laboratory variation and interpretation of banding patterns have impeded progress. The method has recently been adapted to incorporate high-resolution capillary gel-based electrophoresis (CE-ribotyping), so improving discrimination, accuracy and reproducibility. However, reports to date have all represented single-centre studies and inter-laboratory variability has not been formally measured or assessed. Here, we achieved in a multi-centre setting a high level of reproducibility, accuracy and portability associated with a consensus CE-ribotyping protocol. Local databases were built at four participating laboratories using a distributed set of 70 known PCR-ribotypes. A panel of 50 isolates and 60 electronic profiles (blinded and randomized) were distributed to each testing centre for PCR-ribotype identification based on local databases generated using the standard set of 70 PCR-ribotypes, and the performance of the consensus protocol assessed. A maximum standard deviation of only ±3.8bp was recorded in individual fragment sizes, and PCR-ribotypes from 98.2% of anonymised strains were successfully discriminated across four ribotyping centres spanning Europe and North America (98.8% after analysing discrepancies). Consensus CE-ribotyping increases comparability of typing data between centres and thereby facilitates the rapid and accurate transfer of standardized typing data to support future national and international C. difficile surveillance programs

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care
    corecore